M.Sc Thesis

M.Sc StudentAbdelhadi Ameer
SubjectTiming-Driven Variation-Aware Synthesis of Hybrid Mesh/
Tree Clock Distribution Networks
DepartmentDepartment of Electrical and Computer Engineering
Supervisors PROFESSOR EMERITUS Ran Ginosar
PROF. Aby Friedman
Full Thesis textFull thesis text - English Version


Clock skew variations adversely affect timing margins, limiting performance, reducing yield, and may also lead to functional faults. Non-tree clock distribution networks (CDN), such as meshes and crosslinks, are employed to reduce skew and also to mitigate skew variations. These networks, however, increase the dissipated power while consuming significant metal resources. Several methods have been proposed to trade off power and wires to reduce skew. In this work, an efficient algorithm is presented to reduce clock skew variations while minimizing power dissipation and metal area overhead. With a combination of nonuniform meshes and unbuffered trees (UBT), a variation-tolerant hybrid clock distribution network is produced. Clock skew variations are selectively reduced based on circuit timing information generated by static timing analysis (STA). The skew variation reduction procedure is prioritized for critical timing paths, since these paths are more sensitive to skew variations. A framework for skew variation management is proposed. The algorithm has been implemented in a standard 65 nm cell library using standard EDA tools, and tested on several benchmark circuits. As compared to other nonuniform mesh construction methods that do not support managed skew tolerance, experimental results exhibit a 41% average reduction in metal area and a 43% average reduction in power dissipation. As compared to other methods that employ skew tolerance management techniques but do not use a hybrid clock topology, an 8% average reduction in metal area and a 9% average reduction in power dissipation are achieved.