M.Sc Thesis

M.Sc StudentKermany Haim
SubjectThe Compressor: Concurrent, Incremental, and Parallel
DepartmentDepartment of Computer Science
Supervisor PROF. Erez Petrank
Full Thesis textFull thesis text - English Version


The widely used Mark-and-Sweep garbage collector has a drawback in that it does not move objects during collection. As a result, large long-running realistic applications, such as Web application servers, frequently face the fragmentation problem. To eliminate fragmentation, a heap compaction is run periodically. However, compaction typically imposes very long undesirable pauses in the application. While efficient concurrent collectors are ubiquitous in production runtime systems (such as JVMs), an efficient non-intrusive compactor is still missing.

In this work we present the Compressor, a novel compaction algorithm that is concurrent, parallel, and incremental. The Compressor compacts the entire heap to a single condensed area, while preserving the objects' order, but reduces pause times significantly, thereby allowing acceptable runs on large heaps. Furthermore, the Compressor is the first compactor that requires only a single heap pass. As such, it is the most efficient compactors known today, even when run in a parallel Stop-the-World manner (i.e., when the program threads are halted). Thus, to the best of our knowledge, the Compressor is the most efficient compactor known today. The Compressor was implemented on a Jikes Research RVM and we provide measurements demonstrating its qualities.