M.Sc Student | Katz Omer |
---|---|

Subject | Elliptic Incoherent Solitons |

Department | Department of Physics |

Supervisor | ? 18? Mordechai Segev |

When a beam of light is propagating in a homogenous linear medium, it tends to broaden during propagation in each of the transverse directions, to which it propagates. This broadening is caused by linear diffraction. Waveguiding is a method to eliminate this broadening. In a waveguide, the propagation behavior of the beam is modified by the total internal reflections from the boundaries of the waveguide. Under conditions of constructive interference between the total internal reflections of the beam, the beam becomes trapped between these boundaries and forms a guided mode.

Self-trapping of an optical beam occurs when a beam of light induces a
change in the index of refraction through a nonlinear interaction and forms a
waveguide. If the beam is a guided mode of the waveguide that it induced, then
the beam traps itself in the medium, and is diffraction-free. When such a beam
self-traps in a stable fashion, it is called *optical spatial soliton*.

In the year 1998, D. N. Christodoulides et. al. predicted the existence of "elliptic incoherent solitons" in logarithmically saturable nonlinear media. Two years later, E. D. Eugenieva D. N. Christodoulides and M. Segev, predicted the formation of elliptic incoherent solitons in a physical nonlinearity, namely photorefractive saturable nonlinear media. They investigated this new class of solitons by the use of numerical simulations.

This
thesis presents the **first experimental observation** of **elliptic
incoherent solitons **namely, the **self - trapping of an elliptic spatially
incoherent beams**, in photorefractive media.
This is the first observation of the phenomenon
of elliptic incoherent solitons in __any__ system.