טכניון מכון טכנולוגי לישראל
הטכניון מכון טכנולוגי לישראל - בית הספר ללימודי מוסמכים  
M.Sc Thesis
M.Sc StudentPolevoy Hanna
SubjectFoxD1 Protein Regulates Dorso-Ventral Mesoderm Specification
during Early Embryonic Development
DepartmentDepartment of Medicine
Supervisor Professor Dale Frank
Full Thesis textFull thesis text - English Version


Abstract

During early vertebrate embryo development, mesoderm tissue is patterned along the dorsal-ventral (DV) axis by a complex set of signaling events. During early Xenopus laevis (frog) development, antagonism of the Wnt and BMP signaling pathways plays a crucial role for establishing mesoderm pattern along the DV axis. FoxD1 is a member of the Forkhead box transcription factor family of proteins. FoxD1 protein is expressed in the dorsal and dorsolateral region of the developing Xenopus mesoderm, which gives rise to muscle and notochord fates. In this study, we show that FoxD1 is necessary for the expression of both dorsal (notochord) and dorsolateral (muscle) markers, since FoxD1 protein knock down caused a significant loss in the expression of these markers in embryonic explants and whole embryos. Additionally, ectopic expression of FoxD1 in ventral explants sufficed to induce expression of muscle and notochord markers, indicating that FoxD1 protein has dorsalizing activity. We have also examined FoxD1 protein interaction with two major signal pathways that pattern the mesoderm, canonical Wnt and BMP, by overexpressing their antagonists (Dkk and Noggin). Both BMP and Wnt antagonists are expressed in the dorsal mesoderm and are crucial for the correct patterning of these regions during development. Overexpression of either of these antagonists sufficed to hyper-dorsalize either dorsolateral or ventral explants; the dorsolateral explants showed elevated expression of dorsal markers with inhibition of the muscle markers. Similarly, ventral explants exhibited significant reduction in the expression of the ventral markers, with elevated expression of both dorsolateral (muscle) and dorsal markers. Therefore, we observed a shift from ventral to more dorsal cell fates. When combining these signals with overexpression and knock down of FoxD1, we observed that these antagonists have an important role in regulating the activity of FoxD1. In fact, we believe that the background created by various combinations and concentrations of these patterning signals is what directs activity of FoxD1 in each mesodermal region.